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In this paper I analyse the demonstrations of not-denumerability of Real Numbers to point 
out what are the fallaciousness' of these kind of proofs.
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1. INTRODUCTION

After his proof on denumerability of Rational Numbers, Cantor exposed his arguments about the not-
denumerability of Real Numbers, by means of which he intended to recover the not denumerability of a real 
interval from his proof of denumerability of Rational Numbers. If a real interval must be considered continuous, 
Real Numbers must not to be denumerable since otherwise, reordering their sequence indexing so to follow the 
usual magnitude order1, there would be “holes” left between any two terms2 (in particular there would be 
problems with the relationship between Real Numbers and geometry). The proofs follow the same scheme of 
the demonstration of the denumerability of Rational Numbers. But, as I proved in my “Not Denumerability of 
Rational Numbers”[1], they are wrong since they use the term “all” and the shortcut “…” without any clear 
definition of their meaning, resulting only in a way to hide the correct deductions.

2. CANTOR'S FIRST UNCOUNTABILITY PROOF

This is one of the arguments, due to Cantor [2], to prove that Real Numbers are not countable.
Cantor's first uncountability proof [3, p. 32]:
Consider an infinite sequence of different real numbers (aν) = a1, a2, a3, ... which 

is given by any rule, then we can find in any open interval (α, β) a number η (and, 
hence, infinitely many of such numbers) which is not a member of the sequence (aν).

Take the first two members of sequence (aν) which fit into the given interval 
(α, β). They form the interval (α', β'). The first two members of sequence (aν) which 
fit into this interval (α', β') form the interval (α'', β'') and so on. The result is a 
sequence of nested intervals. Now there are only two possible cases.

Either the number of intervals is finite. Inside the last one (α(ν), β(ν)) there cannot 
be more than one member of the sequence. Any other number of this interval 
(α(ν), β(ν)) can be taken as η.

Or the number of intervals is infinite. Then both, the strictly increasing sequence 
α, α', α'', ... and the strictly decreasing sequence β, β', β'', ... converge to different 
limits α∞ and β∞ or they converge to the same limit α∞ = β∞. α∞ = β∞ = η is not a 
member of sequence (aν). If α∞ < β∞, then any number of (α∞, β∞) satisfies the 
theorem. ▢

If the sequence is in magnitude order, then the proof is banal since between two real numbers there are 
infinite real numbers and even infinite rational numbers. So we can assume that Cantor meant an infinite not-
ordered sequence of real numbers.

Let us analyse the steps of the proof:
The case “either” of the proof is clearly wrong since, the sequence being not-ordered, one cannot be sure 

that no more than one member in the sequence would fall in the interval without check them all, so the process 
cannot terminate after a finite number of steps3. 

In the case “or”, 
◦ if α∞ < β∞ then the statement is correct.
◦ If we have α∞ = β∞ then we must do some more considerations:
⁃ First if we would consider the limit as potential, it would be never-ending and so undecidable, since we 

cannot check “all” the members of the sequence. 

1. If one accepts the actual infinity as mathematically treatable, then one has “all” the numbers in the sequence and so the 
reordering must be accepted as possible. In the case one refuses that the actual infinity is mathematically treatable, as I do, then reordering 
an infinity of indexes is not possible since infinity is only in progress and does not even exist an end.

2. I want to stress here that I don’t believe that a sum of zero-dimension entities like points can result in something that is different 
from zero. I stick with the statement from Aristoteles that considered a line made up by lines, planes by planes and volumes by volumes.

3. Also the remark of Prof. Mückenheim:
“We note that the "either"-case cannot occur if sequence (aν) contains at least all rational numbers because any interval 

(α(ν), β(ν)) ⊂ ℚ contains infinitely many and so at least two rational numbers forming the next interval (α(ν+1), β(ν+1)) ⊂ ℚ.”[3, p. 32]
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⁃ Otherwise we would reach the limits and they should belong to the sequence, since in (α(ν), β(ν)),  α(ν) and 
β(ν) are members of  of (aν) by construction; and in effect they do belong to the sequence since we have “all” the 
members of it, and therefore we can find its greatest member smaller than or equal to α∞, and its smallest 
member greater than or equal to β∞; that means that, if α∞ and β∞ would not be in the sequence, α∞ would not be 
the limit of the increasing sequence and β∞ would not be the limit of the deceasing sequence, contradicting the 
hypothesis. Since they belong to the sequence, the final step is the (α∞, β∞) ≡ (α∞, α∞) ≡ (β∞, β∞) interval, that is a 
null interval, with no number in it and this contradicts the statement of the theorem.

So we have that, depending on what the case is in the proof, we fall in different conclusions, i.e. the 
theorem is undecidable (with this kind of proof).

3. CANTOR'S SECOND UNCOUNTABILITY PROOF

Cantor’s second uncountability proof also known as Cantor’s second diagonal method [4], was presented 
using only two elements (or digits): m, w. Nowadays it is used to present it in an interval (0,1) with decimal 
numbers. This clearly does not invalidate the followings.

1. Theorem [5]: The set of all real numbers is uncountable.
Proof: We restrict ourselves to (0, 1) and we assume we can “list” all the numbers of (0, 1). 
The first argument (presentation and historically is Cantor’s):
Our list:
x1 = .a11a12a13···
x2 = .a21a22a23···
⋮
xk = .ak1ak2ak3···
⋮

Let a* = .a1a2a3··· where ak = {5 akk even
2 akk odd

.

Since a* ≠ xk for all k, a* is not on the list, but a* ∈ (0, 1). ▢
Let us examine the proof.
Clearly the list is denumerably infinite by construction. And the assumption is that “all” the numbers are 

listed. But, if so, it is totally wrong to state that “a* ≠ xk for all k”, since, whatever ak be, there can be an infinite 
number of xi with aik = ak: between the number xk

(1)=.ak1ak2ak3···ak k-100··· and the number xk
(2)=.ak1ak2ak3···ak k-199···, 

there are “all” the numbers with different digits after the (k-1)th one, i.e.:

.ai1ai2ai3···ai k-100···
⋮
.ai1ai2ai3···ai k-101···
⋮
.ai1ai2ai3···ai k-102···
⋮
.ai1ai2ai3···ai k-110···
⋮
.ai1ai2ai3···ai k-111···
⋮
.ai1ai2ai3···ai k-112···
⋮
·ai1ai2ai3···ai k-190···
⋮
·ai1ai2ai3···ai k-191···
⋮
.ai1ai2ai3···ai k-199···

So, whatever ak is, there can be infinite xi with the same digits .a1a2a3···ak than a*. Modifying one digit in 
an infinite indeterminate sequence has no meaning.

The logic error in the demonstration is the implicit assumption that in the sequence xk, aik ≠ ajk ∀i, j; i ≠ j4.

4. See also: “Dark Numbers”[6].
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4. ANOTHER ARGUMENT [5]
Consider an infinite sequence of different real numbers (aν) = a1, a2, a3, ... which 

is given by any rule, then we can find in the open interval (0, 1) a number η (and, 
hence, infinitely many of such numbers) which is not a member of the sequence (aν).
Divide [0, 1] into [0, 1/3], [1/3, 2/3], and [2/3, 1]. One of these intervals does not 
contain x1 (if x1 is 1/3, pick [2/3, 1]).
Call this interval I1 = [a1, b1]. Divide I1 into thirds and pick one that does not contain 
x2. Call this interval I2 = [a2, b2]. Repeating the process, we have Ik+1 ⊂ Ik, and 
l(Ik) = 1/3k. The set of left-hand endpoints, [a1, a2, …], is bounded above by 1. Thus 
by LUB has a supremum a*. But a* ≤ bk for all k. Thus a* ∈ [ak, bk] for all k and 
a* ≠ xk for all k. a* is not on our list. ▢

This is another case in which the indiscriminate and vague use of the term “all” leads to erroneous 
results. In fact, if the limit is treated as a limit, i.e. it is never reached, the proof never ends and so it is 
undecidable.  Alternatively, if it is considered reachable, as usual when actual infinite is considered valid, then 

lim
k→∞

l(Ik)=0 ⇒ a∞≡b∞ and a*=a∞≡b∞=x∞-1≡x∞, since xk-1 
maybe∈  [ak, bk] and lim

k→∞  
xk-1 

maybe∈  [ak, bk] ⇒ 

x∞ 
maybe∈  [a∞, b∞]=a∞≡b∞ ⇒ x∞= a* (note that lim

k→∞
xk-1= lim

k→∞
xk = x∞). So a* may be on the list and the theorem is 

still undecidable.

4.1. Remarks
If you find yourselves uncomfortable with the index (k-1) think that it is only a matter of convention. In 

the proof x1 is connected to the interval [0, 1], which we could call I0. But if we number the elements of the 
sequence starting from x0, then we have that xi will be connected with Ii. Alternatively we could call [0, 1] as I1 
and so on, and we would face with the same connection above.

5. CONCLUSIONS

Cantor’s approach to infinity in mathematics flourished in the main stream of the new and strong interest 
in mathematics of the Nineteenth Century. The achievements of science and technology gave to researchers the 
confidence that human mind could explain all of the Nature laws.  In mathematics there were many tentatives to 
formalise its foundations that lead to great enhancements. Among these tentatives there were some that failed 
but this is not any bad: there cannot be enhancements without mistakes. What is very important is to recognise 
them and to learn from them. But one great error is still in use and not corrected. The naif approach to actual 
infinity, introduced by Cantor with its demonstration of the Denumerability of Rational Numbers, reached by 
means of the use of not rigorous demonstrations and the acceptance of not consistency in the mathematical 
definitions [1, p. 8].

How it is seen in this paper, the not justified use of terms such as “all” or of shortcuts such as “…”, can 
easily lead to inconsistent results. 
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